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1 Predictive inference

1.1 (Chap1 )Predictive Inference with Linear Regression
in Moderately High Dimensions

Linear Regression: Inference about Predictive Effects via partialling out

Y = β1D + β′
2W + ε

Ỹ = β1D̃ + ε, E[εD̃] = 0

Theorem 1.1 (Frisch-Waugh-Lovell, FWL). The population linear regression co-
efficient β1 can be recovered from the population linear regression of Ỹ on D̃ :

β1 = argmin
b1

E

[(
Ỹ − b1D̃

)2]
=
(
E
[
D̃2
])−1

E[D̃Ỹ ],

where we assume D cannot be perfectly predicted by W , i.e., E
[
D̃2
]
> 0, so β1 is

uniquely defined.

Theorem 1.2 (Adaptive Inference). Under regularity conditions and if p/n ≈ 0
, the estimation error in Ďi and Y̌i has no first order effect on the stochastic
behavior of β̂1. Namely,

√
n
(
β̂1 − β1

)
≈

√
nEn[D̃ε]/En

[
D̃2
]

and consequently, √
n
(
β̂1 − β1

)
a∼ N(0, V)

where

V =
(
E
[
D̃2
])−1

E
[
D̃2ε2

] (
E
[
D̃2
])−1
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1.2 (chap3) Predictive Inference with High Dimentional Covairates–
Penalized regression

Lasso: Classical linear regression or least squares fails in these high-dimensional
settings because it overfits in finite samples. So Lasso is used in this situation to
avoid overfitting.

β̂j = 0 if

∣∣∣∣∣ ∂∂β̂j
∑
i

(
Yi − β̂′Xi

)2∣∣∣∣∣ < λ

Note: Lasso estimator is set to 0 if the marginal predictive benefit of changing
β away from 0 is smaller than the marginal increase in penalty. Also indicate
that the penalty λ should dominate the noise in the measurement of the marginal
predictive ability.

Post Lasso:We can use the Lasso-selected set of regressors, those regressors whose
Lasso coefficient estimates are non-zero, to refit the model by least squares.

Ridge: penalty term given by the sum of the squared values of the coefficients
times a penalty level λ.

Elastic Net: penalty given by a linear combination of the Lasso and Ridge penal-
ties.

Lava: penalty given by a linear combination of the lasso and Ridge. But the
parameters are split into a dense part and sparse part that put into different
penalty term. It is designed to work well in the sparse + dense settings.

The following theorems provide theoretical understanding of the predictive per-
formance of Lasso.

Definition 1.1 (Approximate sparsity). The sorted absolute values of the coef-
ficients decay quickly. Specifically, the jth largest coefficient (in absolute value)
denoted by |β|(j) obeys

|β|(j) ≤ Aj−a, a > 1/2,

for each j , where the constants a and A do not depend on the sample sizen.

Theorem 1.3. Under approximate sparsity as defined in Definition , restricted
isometry conditions stated below, choosing λ , and other regularity conditions stated
, with probability approaching 1− α as n→ ∞, the following bound holds:√

EX

[(
β′X − β̂′X

)2]
≤ const ·

√
E [ϵ2]

√
s log(max{p, n})

n

where EX denotes expectation with respect to X , and the effective dimension is

s = const ·A1/a · n 1
2a ,
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where constant a is the speed of decay of the sorted coefficient values in the ap-
proximate sparsity definition, Definition 3.1.1. Moreover, the number of regressors
selected by Lasso is bounded by

const · S
with probability approaching 1 - a as n→ ∞. The constants const are different in
different places and may depend on the distribution of (Y, X) and on a.

Note: Under approximate sparsity (s¡¡n) and with appropriate choice of penalty
parameters, Lasso and Post-Lasso will approximate the best linear predictor well.

Definition 1.2 (Restricted Isometry). The following conditions hold:

Uniformly in Z ⊂ X : dim(Z) ≤ L = s log(n),

sup
∥a∥=1

|a′ (En [ZZ
′]− E [ZZ ′]) a| ≈ 0

0 < C1 ≤ inf
∥a∥=1

a′E [ZZ ′] a ≤ C2 <∞,

where C1 and C2 are constants.

Note: This condition says that ”small groups” of regressors are not collinear and
are well-behaved.

1.3 (chap4) Statistical Inference on Predictive and Causal
Effects in High-Dimensional Linear Regression Models

Double Lasso :

1. We run Lasso regressions of Yi on Wi and Di on Wi

γ̂YW = arg min
γ∈Rp

∑
i

(Yi − γ′Wi)
2
+ λ1

∑
j

ψ̂γ
j |γj |

γ̂DW = arg min
γ∈Rp

∑
i

(Di − γ′Wi)
2
+ λ2

∑
j

ψ̂D
j |γj | ,

and obtain the resulting residuals:

Y̌i = Yi − γ̂′YWWi

Ďi = Di − γ̂′DWWi.

2. We run the least squares regression of Ŷi on D̂i obtain the estimator α̂ :

α̂ = argmin
a∈R

En

[
(Y̌ − aĎ)2

]
=
(
En

[
Ď2
])−1 En[ĎY̌ ].

We can use standard results from this regression, ignoring that the input variables
were previously estimated, to perform inference about the predictive effect, α.
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Theorem 1.4 (Adaptive Inference with Double Lasso in High-Dimensional Re-
gression). Under the stated approximate sparsity, the conditions required for The-
orem 3.2.1 (e.g. restricted isometry), and additional regularity conditions, the
estimation error in Ďi and Y̌i has no first order effect on α̂ , and

√
n(α̂− α) ≈

√
nEn[D̃ϵ]/En

[
D̃2
]

a∼ N(0, V),

where

V =
(
E
[
D̃2
])−1

E
[
D̃2ϵ2

] (
E
[
D̃2
])−1

Neyman Orthogonality of Double Lasso : In the Double Lasso method, we
estimate α though the prior estimation of γDW and γYW in the partialling out
procedure. These are called nuisance parameters with the true value

ηo = (γ′DW , γ′YW )
′

and we consider the explicitly dependence of α̂ on the nuisance parameters: α̂(η)

In the double lasso procedure, we constructs the residuals:

Y̌i(η) = Yi − η′1Wi, Ďi(η) = Di − η′2Wi

and solve the population moment equation

M(a, η) := E[(Ỹ (η)− aD̃(η))D̃(η)] = 0

which again implicitly defines the function α̂(η).

The main idea of the Double Lasso approach is that, in the population limit, it
corresponds to a procedure for learning the target parameter α that is first-order
insensitive to local perturbations of the nuisance parameters around their true
values, η0:

∂ηα (ηo) = 0

Note: We will call the local insensitivity of target parameters to nuisance pa-
rameters Neyman orthogonality of the estimation process. It is important in high
dimensional settings where we generally use regularization for estimation. The
use of regularization generally results in bias in the nuisance parameters. Neyman
orthognoality guarantees that the target parameter is locally insensitive to pertur-
bations of the nuisance parameters around their true value, then ensures that the
bias does not transmit to the estimation of the target parameter, at least to the
first order.

Next we show the proof of Neyman Orthognality of Double Lasso process:

Proof: Since the function α(η) is implicitly defined as the solution to the equation
M(α, η) = 0, by the implicit function theorem and letting α = α(η0)

∂ηα (ηo) = −∂aM(α, ηo)
−1
∂ηM(α, ηo)
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the second term consists of 2 components:

∂η1M(α, ηo) = E
[
WD̃ (ηo)

]
= E [W (D − γ′DWW )] = 0

∂η2M(α, ηo) = −E
[
WỸ (ηo)

]
+ 2E

[
αWD̃ (ηo)

]
= −E [W (Y − γ′YWW )] + 2E [αW (D − γ′DWW )] = 0

Therefore we proved ∂ηα (ηo) = 0

1.4 (Chap9) Predictive Inference via Modern Nonlinear Re-
gression

This chapter introduced several modern nonlinear regression methods likeRegres-
sion Trees, Random Forests, Boosted Trees, Neural Nets/Deep Neural
Networks and Ensemble Learning. With a special emphasis on their predic-
tion quality.

Assumption 1.1 (Structured Sparsity of Regression Function). We assume that
g is generated as a composition of q+1 vector-valued functions:

g = fq ◦ . . . ◦ f0

where the i -th function fi

fi : Rdi → Rdi+1 ,

has each of its di+1 components βi -smooth and depends only on ti variables, where
ti can be much smaller than di .

Assumption 1.2 (Nonparametric Sparsity of a Regression Function with Binary
Regressors). We assume that there exists a subset S of size |S| = r , such that
the function g can be written as a function of only the variables in S ; i.e. we can
write

g(Z) = f (ZS)

where ZS is the subvector of Z containing only the coordinates in S .

Under these assumptions, we can have learning guarantees for DNN(Under ap-
proxiamte sparsity), Shallow Regression Trees and Sub-Sampled Honest Forests.

∥ĝ − g∥L2(Z) =
√
EZ [(ĝ(Z)− g(Z))2] → 0, as n→ ∞

5



Note: (The Honest Trees) An honest training approach is as follows: When we
train a tree on a sub-sample, we randomly partition the data in half and we use
half of the data to find the best splits in a greedy manner, and the other half of
the data to construct the estimates at each node of the tree.

Ensemble Learning: It is an aggregated prediction is a linear combination of
the basic predictors.

g̃(Z) =

K∑
k=1

α̃kĝk(Z)

where ĝk denote basic predictors that computed on the training data.

We can then figure out the coefficients of the optimal linear combination of the
rules using test data V by minimizing the sum of prediction errors.

min
(αk)

K
k=1

∑
i∈V

(
Yi −

K∑
k=1

αkĝk (Zi)

)2

If K is large, we can instead use Lasso for aggregation:

min
(αk)

K
k=1

∑
i∈V

(
Yi −

K∑
k=1

αkĝk (Zi)

)2

+ λ

K∑
k=1

|αk|

1.5 (Chap10) Statistical Inference on Predictive and Causal
Effects in Modern Nonlinear Regression Models

DML Inference in the Partially Linear Regression Model(PLM)

Y = βD + g(X) + ϵ, E[ϵ | D,X] = 0

Ỹ = βD̃ + ϵ, E[ϵD̃] = 0,

Procedure :

1. Partition data indices into random folds of approximately equal size: {1, . . . , n} =

∪K
k=1Ik . For each fold k = 1, . . . ,K , compute ML estimators ℓ̂[k] and m̂[k] of the

conditional expectation functions ℓ and m, leaving out the k -th block of data.
Obtain the cross-fitted residuals for each i ∈ Ik :

Y̌i = Yi − ℓ̂[k] (Xi) , Ďi = Di − m̂[k] (Xi) .

2. Apply ordinary least squares of Y̌i on Ďi . That is, obtain β̂ as the root in b of
the normal equations:

En[(Y̌ − bĎ)Ď] = 0
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Theorem 1.5 (Adaptive Inference on a Target Parameter in PLM ). Consider the

PLM model. Suppose that estimators ℓ̂[k](X) and m̂[k](X) provide approximations
to the best predictors ℓ(X) and m(X) that are of sufficiently high-quality:

n1/4
(∥∥∥ℓ̂[k] − ℓ

∥∥∥
L2

+
∥∥m̂[k] −m

∥∥
L2

)
≈ 0.

Suppose that E
[
D̃2
]
is bounded away from zero; that is, suppose D̃ has non-trival

variation left after partialling out. Suppose other regularity conditions listed in [2]

hold. Then the estimation error in Ďi and Y̌i has no first order effect on β̂ :

√
n(β̂ − β) ≈

(
En

[
D̃2
])−1 √

nEn[D̃ϵ].

Consequently, β̂ concentrates in a 1/
√
n neighborhood of β with deviations approx-

imated by the Gaussian law:

√
n(β̂ − β)

a∼ N(0, V),

DML Inference in the Interactive Regression Model (IRM)

Y = g0(D,X) + ϵ, E[ϵ | X,D] = 0

D = m0(X) + D̃, E[D̃ | X] = 0

APE from the IRM: Under conditional exogeneity, the APE coincides with the
average treatment effect (ATE) of the intervention that move D= 0 to D= 1.

θ0 = E [g0(1, X)− g0(0, X)]

ATE from the IRM: Our construction of the efficient estimator for ATE will
be based upon the relation.

θ0 = Eφ0(W )

where
φ0(W ) = g0(1, X)− g0(0, X) + (Y − g0(D,X))H0

H0 =
1(D = 1)

m0(X)
− 1(D = 0)

1−m0(X)

Note: This estimator is doubly robust and is constructed by the combination of
regression adjusted representation θ0 = E[g0(1, X)−g0(0, X)] and propensity score
reweighting representation θ0 = E[Y H0] . While neither of these representation is
Neyman Orthogonal, the above estimator that constructed using the combination
of them is Neyman Orthogonal

Procedure:
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1. Partition sample indices into random folds of approximately equal size: {1, . . . , n} =
∪K
k=1Ik . For each k = 1, . . . ,K , compute estimators ĝ[k] and m̂[k] of the condi-

tional expectation functions g0 and m0, leaving out the k -th block of data, such
that ϵ ≤ m̂[k] ≤ 1− ϵ , and for each i ∈ Ik compute

φ̂ (Wi) = ĝ[k] (1, Xi)− ĝ[k] (0, Xi) +
(
Yi − ĝ[k] (Di, Xi)

)
Ĥi

with

Ĥi =
1 (Di = 1)

m̂[k] (Xi)
− 1 (Di = 0)

1− m̂[k] (Xi)
.

2. Compute the estimator
θ̂ = En[φ̂(W )]

3. Construct standard errors via√
V̂ /n, V̂ = En[φ̂(W )− θ̂]2

and use standard normal critical values for inference.

Theorem 1.6 (Adaptive Inference on ATE with DML). Suppose conditions spec-
ified in [2] hold. In particular, suppose that the overlap condition holds, namely
for some ϵ > 0 with probability 1

ϵ < m0(X) < 1− ϵ.

If estimators ĝ[k](D,X) and m̂[k](X) are such that ϵ ≤ m̂[k](X) ≤ 1−ϵ and provide
sufficiently high-quality approximations to the best predictors g0(D,X) and m0(X)
such that∥∥ĝ[k] − g0

∥∥
L2 +

∥∥m̂[k] −m0

∥∥
L2 +

√
n
∥∥ĝ[k] − g0

∥∥
L2

∥∥m̂[k] −m0

∥∥
L2 ≈ 0,

then the estimation error in these nuisance parameter has no first order effect on
θ̂ : √

n
(
θ̂ − θ0

)
≈

√
nEn (φ0(W )− θ0) .

Consequently, the estimator concentrates in 1/
√
n neigborhood of θ0 , with devia-

tions controlled by the Gaussian law:

√
n
(
θ̂ − θ0

)
a∼ N(0, V)

where
V = E(φ0(W )− θ0)

2

Note: There is a trade-off between the estimator of propensity score m0 and
regression function g0

DML inference for GATES:
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θ0 = E [g0(1, X)− g0(0, X) | G = 1]

θ0 = E [φ0(X) | G = 1] = E [φ0(X)G] /P(G = 1)

DML inference for ATETS:

θ0 = E [g0(1, X)− g0(0, X) | D = 1]

Generic Debiased (or Double) Machine Learning

A general construction upon which DML estimation and inference can be built re-
lies on a method-of-moments estimator for some low-dimensional target parameter
θ0 based upon the empirical analog of the moment condition.

Eψ (W ; θ0, η0) = 0

The first key input of the generic DML procedure is using a score function
ψ(W ; θ, η) such that

M(θ, η) = E[ψ(W ; θ, η)]

identifies θ0 when η = η0 - that is,

M (θ, η0) = 0 if and only if θ = θ0−

and the Neyman orthogonality condition is satisfied:

∂ηM(θ0, η)|η=η0
= 0

score functions:

Scores for Partially Linear Regression Model:

ψ(W ; θ, η) := {Y − ℓ(X)− θ(D −m(X))}(D −m(X)),

ℓ0(X) = E[Y | X], m0(X) = E[D | X]

Scores for Interactive Regression Model:

ψ1(W ; θ, η) := (g(1, X)− g(0, X)) +H(D,X)(Y − g(D,X))− θ

H(D,X) :=
D

m(X)
− (1−D)

1−m(X)

g0(D,X) = E[Y | D,X], m0(X) = P[D = 1 | X]

Scores for estimating GATEs:

ψ(W ; θ, η) :=
G

p
ψ1(W ; θ, η)

p0 = P(G = 1)
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Scores for estimating ATETs:

ψ(W ; θ, η) := H(D,X)
m(X)

p
(Y − g(0, X))− Dθ

p

p0 = P(D = 1)

Note: The score function equals zero under the true value of the target parameter
θ0

The second key input is the use of high-quality machine learning estimators of
the nuisance parameters. A sufficient condition in the examples given includes the
requirement

n1/4 ∥η̂ − η0∥L2 ≈ 0

Procedure:

1. Inputs: Provide the data frame (Wi)
n
i=1, the Neymanorthogonal score/moment

function ψ(W, θ, η) that identifies the statistical parameter of interest, and the
name and model for ML estimation method(s) for η .

2. Train ML Predictors on Folds: Take a K-fold random partition (Ik)
K
k=1 of

observation indices {1, . . . , n} such that the size of each fold is about the same.
For each k ∈ {1, . . . ,K} , construct a high-quality machine learning estimator η̂[k]
that depends only on a subset of data (Xi)i/∈Ik

that excludes the k -th fold. 3.
Estimate Moments: Letting k(i) = {k : i ∈ Ik} , construct the moment equation
estimate

M̂(θ, η̂) =
1

n

n∑
i=1

ψ
(
Wi; θ, η̂[k(i)]

)
4. Compute the Estimator: Set the estimator θ̂ as the solution to the equation.

M̂(θ̂, η̂) = 0.

5. Estimate Its Variance: Estimate the asymptotic variance of θ̂ by

V̂ =
1

n

n∑
i=1

[
φ̂ (Wi) φ̂ (Wi)

′]
− 1

n

n∑
i=1

[φ̂ (Wi)]
1

n

n∑
i=1

[φ̂ (Wi)]
′
,

where
φ̂ (Wi) = −Ĵ−1

0 ψ
(
Wi; θ̂, η̂[k(i)]

)
and

Ĵ0 := ∂θ
1

n

n∑
i=1

ψ
(
Wi; θ̂, η̂[k(i)]

)
.
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6. Confidence Intervals: Form an approximate (1−α)%confidence interval for any
functional ℓ′θ0, where ℓ is a vector of constants, as[

ℓ′θ̂ ± c

√
ℓ′V̂ ℓ/n

]
where c is the (1− α/2) quantile of N(0,1) .

Note: The general DML process can be understood using the PLM as an example.

The following theorems show the properties of the general DML estimator

Definition 1.3 (Strong Identification). We have that M(θ, η0) = 0 if and and
only if θ = θ0 , and that

J0 := ∂θE [ψ (W ; θ0, η0)]

has singular values that is bounded away from zero.

Theorem 1.7 (Generic Adaptive Inference with DML). Assume that estimates of
nuisance parameters are of sufficiently high-quality. Assume strong identification
holds.

Then, estimation of nuisance parameter does not affect the behavior of the estima-
tor to the first order; namely,

√
n
(
θ̂ − θ0

)
≈

√
nEn [φ0(W )] ,

where
φ0(W ) = −J−1

0 ψ (W ; θ0, η0) , J0 := ∂θE [ψ (W ; θ0, η0)] ,

and J0 = E [ψa (W ; η0)] for linear scores. Consequently, θ̂ concentrates in a 1/
√
n

-neighborhood of θ0 and the sampling error
√
n
(
θ̂ − θ0

)
is approximately normal:

√
n
(
θ̂ − θ0

)
a∼ N(0, V), V := E [φ0(W )φ0(W )′] .

Theorem 1.8. Under the same regularity conditions, the interval

[
ℓ′θ̂ ± c

√
ℓ′V̂ℓ/n

]
where c is the (1 − α/2) quantile of a N(0,1) contains ℓ′θ0 for approximately
(1− α)× 100 percent of data realizations:

P

(
ℓ′θ0 ∈

[
ℓ′θ̂ ± c

√
ℓ′V̂ℓ/n

])
≈ (1− α).

Selection of the Best ML Methods for DML is used to Minimize Upper Bounds on
Bias.
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2 Causal Inference

2.1 (Chap2) Causal Inference via Randomized Experiments

Potential Outcome Framework

Assumption 2.1 (Consistency). we observe Y := Y (D)

E[Y | D = d] = E[Y (d) | D = d], for d ∈ {0, 1}.

Note: It requires that the treatment and control states are well-defined and clearly
aligned with the observed treatment status, D.

Assumption 2.2 (Stable Unit-Treatment Value Assumption (SUTVA)). Poten-
tial outcomes for any observational unit depend only on the treatment status of
that unit and not on the treatment unit of any other unit.

Assumption 2.3 (Random Assignment/Exogeneity). suppose that treatment sta-
tus is randomly assigned. Namely D is statistically independent of each potential
outcome Y(d) for d ∈ {0, 1}, and 0 < P(D = 1) < 1 .

D⊥Y (d)

Note: This assumption is important in control for selection bias. It shows that
D is uninformative about the potential outcome.

Selection bias: difference between ATE (calsal effect) and APE (pre-
dictive effect)

APE : π = E[Y | D = 1]− E[Y | D = 0]

ATE : δ = E[Y (1)− Y (0)] = E[Y (1)]− E[Y (0)]

If, for example, the treatment assignment D is associated the potential outcome
Y, then it is likely that the observed APE is a biased estimator of the causal effect
ATE.

Theorem 2.1 (Randomization Removes Selection Bias). Under Random Assign-
ment/Exogeneity Assumption , the average outcome in treatment group d recovers
the average potential outcome under the treatment status d :

E[Y | D = d] = E[Y (d) | D = d] = E[Y (d)],

for each d ∈ {0, 1} . Hence the average predictive effect and average treatment
effect coincide:

π := E[Y | D = 1]− E[Y | D = 0]

= E[Y (1)]− E[Y (0)] =: δ.
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Pre-treatment covariates and heterogeneity

Assumption 2.4 (Random Assignment idenpendent of Covariates). Suppose that
treatment status is randomly assigned. Namely, D is statistically independent of
both the potential outcomes and a set of pre-determined covariates. 0 < P(D =
1) < 1

D⊥(Y (0), Y (1),W )

Theorem 2.2 (Randomization with Covariates). Under Random Assignment iden-
pendent of Covariates , the expected value of Y conditional on treatment status
D=d and covariates W coincides with the expected value of potential outcome Y(d)
conditional on covariates W :

E[Y | D = d,W ] = E[Y (d) | D = d,W ] = E[Y (d) |W ],

for each d . Hence the conditional predictive and average treatment effects agree:

π(W ) = δ(W )

Note: This assumption spells out that, if we plan to use covariates in the analysis,
randomization has to be made with respect to these covariates as well.

Testing covariate balance: Testing Covariance Balance. The random assign-
ment assumption induces covariate balance. Namely, the distribution of covariates
should be the same under both treatment and control:

W |D = 1 ∼W |D = 0,

and, equivalently,

D |W ∼ D

.

A useful implication is that D is not predictable by W :

E[D |W ] = E[D].

This latter conditions is testable using regression tools. It amounts to saying that
the R2 of a regression of D on W is 0.

Classical Additive Approach: Improving Precision Under Linearity

The projection coefficient α of the folloing function recovers the ATE:

Y = Dα+ β′X + ϵ, ϵ ⊥ (D,X)

Illustrate this in linearity assumption:

E[Y | D,W ] = Dα+ β′X
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We assume that covariates are centered, and there is covariate balance:

E[W ] = 0, E[W | D = 1] = E[W | D = 0]

Using centered covariates implies that:

E[Y (0)] = E[E[Y | D = 0, X]] = β1

E[Y (1)] = E[E[Y | D = 1, X]] = β1 + α.

δ = E[Y (1)]− E[Y (0)] = α

Statistical inference on the ATE:( √
n(α̂− α)

√
n
(
β̂1 − β1

) ) a∼ N(0, V),

where covariance matrix V has components:

∨11 =
E
[
ϵ2D̃2

]
(
E
[
D̃2
])2 , V22 =

E
[
ϵ21̃2

](
E
[
1̃2
])2 , V12 = V21 =

E
[
ϵ2D̃1̃

]
E
[
1̃2
]
E
[
D̃2
]

We consider what happens when we do not include covariates in the regression. In
this case, the OLS estimator ᾱ estimates the projection coefficient α in the BLP
using (1, D) alone

Y = αD + β1 + U, E[U ] = E[UD] = 0

where the noise

U = β′(X − E[X]) + ϵ

contains the part of Y that is linearly predicted by X, β′(X −E[X]) = β′X − β1 .
We then have that ᾱ obeys

√
n(ᾱ− α)

a∼ N
(
0,V11

)
, V11 =

E
[
U2D̃2

]
(
E
[
D̃2
])2 .

Under linear assumption, it follows that V11 ≤ V̄11 , with the inequality being
strict if V ar(β′X) > 0

Note: Under linear assumption, Using pre-determined covariates improves the
precision of estimating the ATE

The Interactive Approach: Always Improves Precision and Discovers
Heterogeneity
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Letting X=(1, W) be an intercept and the pre-treatment covariates W , let us
write the BLP of each of Y(0) and Y(1) using X as

Y (d) = β′
dX + εd, εd ⊥ X, d = 0, 1.

Under linear Assumption, it coincides with the BLP of Y using X in the D=d
population. Letting ε = Dε1 + (1−D)ε0 , we thus have

Y = β′
dX + ε, E[εX | D = d] = 0, d = 0, 1.

Y = β′
0X + β′

δXD + ε, ε ⊥ (X,DX)

where βδ = β1 − β0

We assume that covariates are centered:

E[W ] = 0

.

Since X contains an intercept, εd ⊥ X implies E [εd] = 0 . Together with centered
covariates, we find that

E[Y (d)] = E [β′
dX + εd] = βd,1.

This means that the ATE coincides with the coefficient on D in the BLP of Y
using (X, DX) . That is, βδ,1 = δ.

If we use OLS to estimate the BLP of Y using (X, D X) , then an application of
the OLS theory in the previous chapter gives us that, under regularity conditions, √

n
(
β̂δ,1 − δ

)
√
n
(
β̂0,1 − E[Y (0)]

)  a∼ N(0, V),

where covariance matrix V has components:

V11 =
E
[
ϵ2D̃2

]
(
E
[
D̃2
])2 , V22 =

E
[
ϵ21̃2

](
E
[
1̃2
])2 , V12 = V21 =

E
[
ϵ2D̃1̃

]
E
[
1̃2
]
E
[
D̃2
] ,

where D̃ = D−E[D] is the residual after partialling out linearly (1,W,DW ) from
D and 1̃ := (1−D) is the residual after partialling out (D,W,DW ) from 1

Recall that when we use (1,D) to estimate the ATE, the estimator obeys:

√
n(δ̂ − δ)

a∼ N
(
0,V11

)
,V11 =

E
[
U2D̃2

]
(
E
[
D̃2
])2
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Since ϵ satisfies the BLP conditions for each of the treatment populations, i.e.
E[εW | D = d] = 0 , it then follows that

V11 ≤ V11.

Moreover, the inequality is strict if Var
(
β′
0,2W

)
> 0 or Var

(
β′
1,2W

)
> 0

Note: Pre-determined covariates improve the precision of estimating the ATE δ,
when using the interactive model, without any linearity assumptions on the CEF.

2.2 (Chap5) Causal Inference via Conditional Ignorability

Here we discuss how average causal effects may be identified using regression when
treatment is not randomly assigned but instead depends on observed covariates.

Assumption 2.5 (Conditional Ignorability and Consistency). Ignorability: Sup-
pose that treatment status D is independent of potential outcomes Y(d) conditional
on a set of covariates X: For each d,

D⊥Y (d)|X

Consistency: Suppose that Y is generated as Y := Y(D)

Assumption 2.6 (Overlap/Full Support). The probability of receiving treatment
given X, the propensity score

p(x) := P (D = 1|X)

is non-degenerate:
P (0 < p(x) < 1) = 1

Note: Without this condition, there are values x in the support of X where we
cannot construct a contrast between treatment and control units. We cannot
learn the conditional average treatment effect at these values of X and thus are
also unable to learn the unconditional average effect of the treatment.

Theorem 2.3 (Conditioning on X removes selection bias). Under Conditional
Ignorability and Overlap, the conditional expectation function of observed outcome
Y given D=d and X recovers the conditional expectation of the potential outcome
Y(d) given X :

E[Y | D = d,X] = E[Y (d) | D = d,X] = E[Y (d) | X].

Note: note that the overlap assumption makes it possible to condition on the
events D = 0, X and D = 1, Xat any value in the support of X and that the
second equality holds by ignorability.

Identification by conditioning
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Hence, the Conditional Average Predictive Effect (CAPE),

π(X) = E[Y | D = 1, X]− E[Y | D = 0, X],

is equal to the Conditional Average Treatment Effect (CATE),

δ(X) = E[Y (1) | X]− E[Y (0) | X].

Thus, the APE and ATE also agree:

δ = E[δ(X)] = E[π(X)] = π.

Under conditioning assumptions, we next illustrate how we con adopt linear regres-
sion to retrieve causal estimates. A simple instance is under the linear assumption:

E[Y | D,X] = αD + β′W,

which gives a model

Y = αD + β′W + ϵ, E[ϵ | D,X] = 0.

Here it is understood that W may include X as well as prespecified nonlinear
transformations of X .

In this model, α identifies δ
δ = α

Note: The linearity assumption and ignorability assumptions imply that treat-
ment effects are homogeneous; that is, δ(x) = δ for all x in the support of X.

We can relax the linear assumption by considering the interactions:

E[Y | D,X] = α1D + α′
2WD + β1 + β′

2W

where we also maintain that we are working with centered covariates: EW = 0

We then recover the ATE as

δ = α1

and CATE as

δ(X) = α1 + α′
2W.

Identification by Propensity Scores

The identification by conditioning approach requires being able to accurately
model the ”outcome process”, When the outcome process is hard to model, we
might have a much better handle on the ”treatment selection process,” i.e. the
propensity score. An alternative approach, known as the Horvitz-Thompson method
, uses propensity score reweighting to recover averages of potential outcomes.

17



Theorem 2.4 (Horvitz-Thompson: Propensity Score Reweight ing Removes Bias).
Under Conditional Ignorability and Overlap, the conditional expectation of an ap-
propriately reweighted observed outcome Y , given X , identifies the conditional
average of potential outcome Y(d) given X :

E

[
Y

1(D = d)

P(D = d | X)

∣∣∣∣ X] = E[Y (d) | X]

Then, averaging over X identifies the average potential outcome:

E

[
Y

1(D = d)

P(D = d | X)

]
= E[Y (d)]

Proof:

E

[
Y

1(D = d)

P(D = d | X)

∣∣∣∣ X] = E[Y 1(D = d) | X]

P(D = d | X)
= E[Y (d) | X]

E[1(D = d) | X]

P(D = d | X)
= E[Y (d) | X],

where we used conditional ignorability in the second equality.

As a consequence, we can identify average treatment effects by simple averaging
of transformed outcomes:

δ = E[Y H], δ(X) = E[Y H | X].

H =
1(D = 1)

P(D = 1 | X)
− 1(D = 0)

P(D = 0 | X)
,

where H is called the Horvitz-Thompson transform.

Remark: Propensity score reweighting is generally not the most efficient approach
to estimating treatment effects from a statistical point of view because it ignores
any dependence between the outcomes and controls,X, that is not captured by the
propensity score. Moreover, estimation based on only propensity score reweighting
fails under imbalances that might arise due to imperfect data collection. Later, we
will use both regression and reweighting as part of ”double machine learning” to
operationalize efficient statistical inference on treatment effects in fully nonlinear
(nonparametric) models.

We can perform covariate balance check to check if the statified RCT/ Conditional
ignorability is valid. Specifically, conditional ignorability implies that E[H|X] = 0.
Thus if covairates predict H, we can conclude that Conditional ignorability does
not hold.

group ATE (GATE)

δG = E[Y (1)− Y (0) | G = 1]

E[Y (1)−Y (0) | G = 1] = E[E[Y | D = 1, X]−E[Y | D = 0, X] | G = 1] = E[HY | G = 1].

18



we can identify GATEs either by taking the difference in regression functions or
applying propensity score reweighting of outcomes and then averaging over group
G.

average treatment effect on the treated (ATET)

δ1 = E[Y (1)− Y (0) | D = 1]

E[E[Y | D = 1, X]− E[Y | D = 0, X] | D = 1]

Assumption 2.7 (Ignorability and Overlap for Treated)). (a) Ignorability. Sup-
pose that the treatment status D is independent of Y(0) conditional on a set of
covariates X , that is

D ⊥ Y (0) | X.

(b) Weak Overlap. Suppose that the propensity score satisfies:

P(p(X) < 1) = 1

Theorem 2.5 (Identification of ATET). Under ignorability and overlap assump-
tion for treated,

δ1 = E[Y | D = 1]− E[E[Y | X,D = 0] | D = 1]

proof:
E[Y (0) | D = 1] = E[E[Y (0) | D = 1, X] | D = 1]

= E[E[Y (0) | D = 0, X] | D = 1]

= E[E[Y | D = 0, X] | D = 1]

Theorem 2.6 (Propensity Score Reweighting for the Treated). Under ignorability
and overlap assumption for treated,

E[Y H̄] = δ1, H̄ = Hp(X)/E[D].

proof:
E[DY ]

E[D]
=

E[DY (1)]

E[D]
= E[Y (1) | D = 1]
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E
[

(1−D)
1−p(X)p(X)Y

]
E[D]

=
E
[

p(X)
1−p(X)E[(1−D)Y | X]

]
E[D]

=
E
[

p(X)
1−p(X)E[(1−D)Y (0) | X]

]
E[D]

=
E
[

p(X)
1−p(X)E[1−D | X]E[Y (0) | X]

]
E[D]

=
E[p(X)E[Y (0) | X]]

E[D]

=
E[E[D | X]E[Y (0) | X]]

E[D]

=
E[E[DY (0) | X]]

E[D]

=
E[DY (0)]

E[D]
= E[Y (0) | D = 1]

Clever Covariate Regression

estimating the ATE, then it suffices to learn the BLP of the outcome Y using the
single covariate

ϕ(D,X) := H =
1(D = 1)

p(X)
− 1(D = 0)

1− p(X)

We can then use this BLP model as a proxy for the CEF E[Y | D, p(X)] . Specif-
ically, we learn a decomposition

Y = βϕ(D,X) + ϵ, ϵ ⊥ ϕ(D,X)

by running OLS of Y on ϕ(D,X)and then use

E[β(ϕ(1, X)− ϕ(0, X))]

as the ATE.

proof: Note that the random variable H satisfies

E[f(D,X)H | X] = f(1, X)− f(0, X)

for any function f(D, X). Then, by orthogonality of ϵ in the BLP decomposition:

E[Y (1)− Y (0)] = E[Y H] = E[βϕ(D,X)H]

= E[β(ϕ(1, X)− ϕ(0, X))].

Rosenbaum-Rubin’s Result: Conditioning on the propensity score

Theorem 2.7 (Rosenbaum and Rubin: Conditioning on the Propensity Score
Removes Selection Bias). Under Ignorability and Overlap, D is generated inde-
pendently of Y(d) for each d , conditional on the propensity score p(X) : For each
d ,

D ⊥ Y (d) | p(X).
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Note: In other words, conditional on p(X)=p, variation in D is as good as ran-
domly assigned. We can identify the conditional average potential outcome as

E[Y (d) | p(X)] = E[Y | D = d, p(X)]

proof: First we state that the following equivalence relations hold:

D ⊥ X | p(X) ⇔ P(D = 1 | X, p(X)) = P(D = 1 | p(X)).

From the LHS to the RHS follows from:

P(D = 1 | X, p(X)) = P(D = 1 | X) = p(X)

and

P(D = 1 | p(X)) = E[D = 1 | p(X)] = E[E[D | X, p(X)] | p(X)] = E[p(X) | p(X)] = p(X)

This property underlies covariate balance checks.

From the RHS to the LHS follows from:

E[g(Y (1)) | p(X)] =E[E[g(Y (1)) | X, p(X)] | p(X)]

=E[E[g(Y (1)) | X] | p(X)]

=E

[
g(Y )

1(D = 1)

p(X)

∣∣∣∣ p(X)

]
=E

[
g(Y )

1(D = 1)

p(X)

∣∣∣∣ D = 1, p(X)

]
P (D = 1 | p(X))

+ E

[
g(Y )

1(D = 1)

p(X)

∣∣∣∣ D = 0, p(X)

]
P (D = 0 | p(X))

=E[g(Y ) | D = 1, p(X)]
P (D = 1 | p(X))

p(X)

=E[g(Y ) | D = 1, p(X)]

=E[g(Y (1)) | D = 1, p(X)]

where we use P (D = 1 | p(X)) = p(X) . We can similarly argue for the case of
d=0 . Thus, the conditional distribution of Y(1) does not depend on D , once we
condition on p(X) .

2.3 (Chap6) Causal Inference via Linear Structural Equa-
tions

triangular structural equation model (TSEM):

Y := δP +X ′β + ϵY
P := X ′v + ϵP
X

where ϵY , ϵP and X are mutually independent (or at least uncorrelated) and
determined outside of the model
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2.4 (Chap7) Causal Inference via Directed Acyclical Graphs
and Nonlinear Structural Equation Models

Definition 2.1 (acyclic structural equation model (ASEM)). The ASEM corre-
sponding to the DAG G=(V, E) is the collection of random variables {Xj}j∈V
such that

Xj := fj (Paj , ϵj) , j ∈ V,

where the disturbances (ϵj)j∈V are jointly independent.

Definition 2.2 (d-Separation). Given a DAG G, a set of nodes S d-separates
nodes X and Y if nodes in S block all paths between X and Y . d -separation is
denoted as

(Y ⊥d X | S)G .

Theorem 2.8 (Conditional Independence from d-Separation). d -Separation im-
plies conditional independence, Global Markov:

(Y ⊥d X | S)G =⇒ Y ⊥ X | S

.

The reverse implication is not true in general, this is regard as unfaithfulness.

Y ⊥ X | S =⇒ (Y ⊥d X | S)G

2.5 (Chap8) Valid Adjustment Sets from DAGs

Theorem 2.9 (A Complete Criterion for Identification by Conditioning). Con-
sider any ASEM with DAG G. Let us re-label a policy node Xj as D , and let Y
, an outcome of interest, be any other descendant of D . Consider a SWIG DAG
G̃(d) which is induced by the fix (D=d) intervention. Consider any other subset
of nodes S that appears in both G and G̃(d) , such that Y(d) is d -separated from
D by S in G̃(d) . - Then the following conditional exogeneity/ignorability holds:

Y (d) ⊥ D | S.

Then
E[Y (d) | S = s] = E[Y | D = d, S = s]

holds for all s such that p(d, s)¿0 .

Adjustment strategies

1. Conditioning on one of all parents of Y (that are not descendants of D)

2. Conditioning using the backdoor criterion enables us to find all minimal ad-
justment sets

3. Conditioning on all common causes of Y and D is also sufficient.
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