Pseudocode

Algorithm 1 simMultiStageRAR

1: **Input:** n1, n, c1, num_stage

Stage 1: Identify subgroups

- 2: $X_1, T_1, Y_1 \leftarrow \text{enroll data for stage } 1$
- 3: thres \leftarrow IdentifyGroup($n1, X_1, T_1, Y_1$), which is the rules that define the subgroups
- 4: $S_1 \leftarrow \text{GenS}(thres, X_1, m)$, map the data into the identified subgroups using the estimated threshold
- 5: $e_{1.hat} \leftarrow \text{Estimated propensity scores}$
- 6: tau_1 , $sd_{1.t}$, $sd_{1.c} \leftarrow$ Estimate subgroup ATEs and standard errors for Y in treatment and control
- 7: Store initial values: $tau_{old} \leftarrow tau_1$, $sd_{old.t} \leftarrow sd_{1.t}$, $sd_{old.c} \leftarrow sd_{1.c}$, $S_{old} \leftarrow S_1$, $n_{old} \leftarrow n1$, $T_{old} \leftarrow T_1$, $X_{old} \leftarrow X_1$, $Y_{old} \leftarrow Y_1$, $e_{1.hat.old} \leftarrow e_{1.hat}$

Stage 2 to (num_stage+1): confirm subgroups

- 8: for i = 1 to num_stage do
- 9: $X_i \leftarrow$ enroll more data for the new experiment stage
- 10: $S_i \leftarrow GenS(thres, X_i, m)$ before experiment, classify the sample into subgroups using the rules given by stage 1
- 11: $S_{new}, n_{new} \leftarrow \text{Combine the new data with old data}$
- 12: $e_{opt} \leftarrow SubAlloc(tau_{old}, sd_{old.t}, sd_{old.c}, c1, S_{new}, n_{new}, m)$
- 13: $e_{calibrated} \leftarrow$ adjust optimal treatment allocation for combined data
- 14: $T_i \leftarrow \text{Assign treatments based on } e_{calibrated}$
- 15: $Y_i \leftarrow \operatorname{GenY}(n, X_i, T_i)$
- 16: Combine the new data with the old one, and update S_{old} , X_{old} , Y_{old} , T_{old}
- 17: tau_{old} , $sd_{old.t}$, $sd_{old.c} \leftarrow$ estimate subgroup ATE and standard errors for Y based on the combined data
- 18: end for
- 19: $tau_{opt} \leftarrow tau_{old}$ Calculate final tau
- 20: **return** tau_1 , tau_{opt} , m, thres

Algorithm 2 IdentifyGroup: TSMCD Algorithm

- 1: **Input**: n, X,T, Y
- 2: Y is the outcome and (X,T) is the covariate
- 3: **for** $\ell = 1$ **to** 20 **do**
- Step 1: Splitting stage

- Set $m = \lfloor 0.1\ell\sqrt{n^*} \rfloor$ and $q_n = \lfloor \frac{n^*}{m} \rfloor 1$, where n^* is the number of events; Split the data sequence into $q_n + 1$ segments $\mathcal{I}_j, j = 1, \dots, q_n + 1$; Estimate $\hat{\theta} = \left(\left(\hat{\theta}_1 \right)^\top, \dots, \left(\hat{\theta}_{q_n+1} \right)^\top \right)^\top$ by minizing a penalized loss
- Compute the index sets $\hat{\mathcal{A}}^* \equiv \left\{\hat{k}_1, \dots, \hat{k}_{\hat{s}}\right\}$, where $\hat{k}_1 < \hat{k}_2 < \dots < \hat{k}_{\hat{s}}$ and $\hat{s} = \sharp \hat{A}^*$ that indicating which segment includes the threshold;
- Step 2: Refining stage 9:
- 10: if $\hat{s} = 0$ then
- Go to step 13; 11:
- else if $\hat{s} > 0$ then 12:
- Estimate the threshold a_j in $\left(\tilde{Z}_{\left(n^*-\left(q_n-\hat{k}_j+3\right)m\right)}, \tilde{Z}_{\left(n^*-\left(q_n-\hat{k}_j+1\right)m\right)}\right)$ 13:
- 14:
- Estimate the coefficient of the subgroup defined by the threshold, θ^* 15: $((\beta_1^*)^\top, (\mathbf{d}_1^*)^\top, \dots, (\mathbf{d}_\mathbf{s}^*)^\top)^\top$ by minimizing a penalized loss function;
- Return the set of estimated thresholds $\hat{\mathcal{M}}_{\ell} = \{\hat{a}_{1,\ell}, \dots, \hat{a}_{\hat{s}_{\ell},\ell}\}$ from step 11 16: and the estimator of the coefficient $\hat{\theta}_{\ell}^*$ from step 13, and compute $BIC_{\hat{\mathcal{M}}_{\ell}}$
- 17: end for
- 18: Choose $\hat{\ell}$ that minimizes $BIC_{\hat{\mathcal{M}}_{\ell}}$ and obtain the final estimators $\hat{\mathcal{M}}_{\mathrm{opt}} =$ $\hat{\mathcal{M}}_{\hat{\ell}}$ and $\hat{\theta}_{\text{opt}}^* = \hat{\theta}_{\hat{\ell}}^*$.
- 19: obtain subgroup treatment effect τ based on the estimated coefficient $\hat{\theta}_{\hat{\ell}}^*$, and the threshold that define the subgroup, $thres \leftarrow \hat{\mathcal{M}}_{opt}$
- 20: Return: τ , thres